Carnitine: A Neuromodulator in Aged Rats

Packiasamy A. R. Juliet,1 Deepak Balasubramaniam,2 Naveen Balasubramaniam,2 and Chinnakannu Panneerselvam3

1Department of Geriatrics, Nagoya University School of Medicine, Japan.
2Madras Medical College, M.G.R. Medical University, Chennai, India.
3Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.

A wide range of morphological and biochemical changes occur in the central nervous system with increasing age. L-carnitine, a naturally occurring compound, plays a vital role in fatty acid transport across the mitochondrial membrane. L-carnitine (300 mg/kg body wt/day) was administered intraperitoneally to young and old male Wistar rats for 7, 14, and 21 days. Carnitine, dopamine, epinephrine, and serotonin levels were assayed in discrete regions of the brain. Carnitine supplementation increased the levels of dopamine, epinephrine, and serotonin in the experimental animals in our study. Response to carnitine supplementation varied among the brain regions that have been studied. The regions rich in cholinergic neurons such as the cortex, hippocampus, and striatum showed more response after 21 days of carnitine treatment. The results of the present study suggest the role of L-carnitine as a neuromodulator and antiaging medication.
tissue levels of nerve growth factor (NGF) were assayed according to the methods previously described by Piovesan and colleagues (18). Statistically significant changes in the different groups were evaluated by student’s t test. The levels of significance were evaluated with p values.

RESULTS

Figure 1 shows the level of carnitine in various brain regions of control and carnitine-treated young and aged rats. The level of carnitine was found to be decreased in the cortex, hippocampus, striatum, cerebellum, and hypothalamus of aged rat brain. A highly significant reduction was observed in the cortex and hippocampus followed by the striatum. There was no significant increment in carnitine levels in young rat brain regions, even at the end of 21 days of carnitine administration, whereas aged rats showed a highly significant increase (cortex, striatum, and hippocampus: \(p < .001 \)) in carnitine status after 21 days of carnitine treatment. Table 1 shows the level of dopamine in various regions of control and carnitine-treated young and aged rat brain.

The dopamine turnover is an important factor in determining the degree of dopaminergic neuron loss because neurons with a physiologically higher dopamine metabolism could be subjected to a greater oxidative stress from dopamine-derived oxyradicals. It can be seen from the figure that the level of dopamine decreased during aging. The level of dopamine was significantly low in the cortex, hippocampus, striatum, and hypothalamus (\(p < .001 \)) of the aged rat brain. Significant increase in the level of dopamine was observed in the cortex, hippocampus (\(p < .001 \)), and striatum (\(p < .01 \)), whereas only a mild increase was observed in the cerebellum and hypothalamus (\(p < .05 \)) of aged rat brain after carnitine administration. Table 2 depicts the effect of carnitine on the level of epinephrine in young and aged rat brain regions. The level of epinephrine was found to be low in aged rat brain regions [cortex, hippocampus, and striatum (\(p < .01 \))] when compared with young rats. In young rats, carnitine administration did not produce any statistically significant changes while in aged rats, carnitine treatment enhanced the level of epinephrine. The percentage of significance varied among the 5 regions. Highly significant changes were observed in the cortex, hippocampus, and striatum of the 21-day carnitine-treated rats. Table 3 shows the effect of L-carnitine on the level of 5HT in young and aged rat brain.

NGF is the best-characterized neurotrophin and is critical to the survival and maintenance of some populations of sympathetic and sensory neurons. In the CNS, NGF and its receptors have been found to be associated with cholinergic innervations. Unlike other enzymes, the level of NGF is moderately decreased during aging. NGF was significantly low in the cortex and in hippocampus (\(p < .001 \)) followed by the striatum and hypothalamus (\(p < .01 \)), whereas no age-related changes were observed in the cerebellum of the aged rat brain (Figure 2). The level of NGF was gradually...
increased after carnitine supplementation. The cerebellum region did not show any response to carnitine supplementation. The regions that are highly affected during aging, such as the cortex and hippocampus, show high response to carnitine supplementation.

DISCUSSION

Aging induces several alterations in brain structure and functions. In old age, the level of neurotransmitter synthesis and their transport are decreased (19). Age-related changes in the brain are regionally variable since some brain regions are more age sensitive than others because of their biochemical make-up and also because functions differ from region to region (20). The present study was carried out to assess the effect of carnitine on age-associated alterations in different regions of the rat brain.

Carnitine is found in all areas of the CNS suggesting that a metabolic pool of carnitine exists in the brain (21). In the present study, the level of carnitine was found to be significantly low in aged rat brain regions (Figure 1). Our observations were consistent with those of Costell and colleagues (22) who demonstrated lower levels of carnitine in tissue of aged mice and humans. The changes in the level of tissue carnitine are pronounced in particular brain regions. It is well known that the brain is supplied with their carnitine requirements solely through hepatic synthesis and blood transport. The decrease in the level of carnitine may be due to factors such as reduced biosynthesis in the liver, defective carnitine transport, or failure of carnitine reabsorption. The decrease in the level of carnitine may be due to factors such as reduced biosynthesis in the liver, defective carnitine transport, or failure of carnitine reabsorption by the kidney. Deficiency of any of the cofactors such as vitamin C, vitamin B, and pyridoxal phosphate and methionine during old age may be another reason (23–25).

Supplementation of L-carnitine significantly enhanced the status of carnitine in various regions of the brain of study animals while no significant increase was observed in young rats. The increase in the level of brain carnitine observed in the experimental animals treated with carnitine indicates that there is proper intestinal absorption (26) and adequate blood concentration due to exogenous administration.

Dopamine is easily auto-oxidized, and excessive oxidation of dopamine may lead to the accumulation of cytotoxic compounds with increasing age (27). Brain dopamine undergoes oxidation resulting in an increased level of oxygen free radicals, which might affect the cellular antioxidant defense mechanisms, which in turn could result in the degeneration of dopaminergic neurons (28). Dopamine oxidation products such as dopamine quinones and dihydroxy phenylacetic acid quinones bind to sulphydryl groups of proteins and accumulate in the brain and are responsible for the physiological changes that take place during aging (29).

The levels of dopamine and epinephrine are found to be near normal after the supplementation of carnitine because carnitine is able to enhance the glutathione level due to its energy-promoting property (30). The enhanced glutathione binds to quinone and prevents its reaction with the sulphydryl group of protein, which in turn inhibits the formation of 5-s-CDA (chenedoxygenic acid). Apart from this, glutathione prevents an excess of cysteine from binding to other proteins.

Table 1. Dopamine Level in Control and Carnitine-Treated Young and Aged Rat Brain Regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Young</th>
<th>Aged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>IB</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>30.2 ± 10.8</td>
<td>16.3 ± 9.5</td>
</tr>
<tr>
<td>Striatum</td>
<td>36.8 ± 10.8</td>
<td>16.3 ± 9.5</td>
</tr>
<tr>
<td>Cortex</td>
<td>240.5 ± 11.2</td>
<td>110.7 ± 5.5</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>158.7 ± 12.1</td>
<td>110.7 ± 5.5</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>158.7 ± 12.1</td>
<td>110.7 ± 5.5</td>
</tr>
</tbody>
</table>

Note: Dopamine content is expressed as ng/g tissue.

Values are expressed as mean ± SD for 6 animals in each group.

On comparing groups IA, IB, and ID with group IA: *p < .05; **p < .01.

Comparison of group IID with group IA: *p < .05; **p < .01.

Table 2. Epinephrine Concentration in Control and Carnitine-Treated Young and Aged Rat Brain Regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Young</th>
<th>Aged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>IB</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>30.2 ± 10.8</td>
<td>16.3 ± 9.5</td>
</tr>
<tr>
<td>Striatum</td>
<td>36.8 ± 10.8</td>
<td>16.3 ± 9.5</td>
</tr>
<tr>
<td>Cortex</td>
<td>240.5 ± 11.2</td>
<td>110.7 ± 5.5</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>158.7 ± 12.1</td>
<td>110.7 ± 5.5</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>158.7 ± 12.1</td>
<td>110.7 ± 5.5</td>
</tr>
</tbody>
</table>

Note: Epinephrine content is expressed as ng/g tissue.

Values are expressed as mean ± SD for 6 animals in each group.

On comparing groups IB, IC, and ID with group IA: *p < .05.

Comparison of group IID with group IA: *p < .05; **p < .01.
to dopamine to form quinines, which inhibit complex-I activity (31). The ATP-enhancing effect of carnitine is also responsible for the amelioration of the neurotransmitter storage, release, and reuptake process that is necessary for maintaining the normal level of neurotransmitter in the rat brain (32).

Elevated level of NGF after carnitine administration protects the brain from oxidative damage induced by dopamine auto-oxidation product. NGF enhances the activities of tyrosine hydroxylase and dopamine decarboxylase (33,34). This neurotrophin increases the availability of glutathione (35), which in turn protects the dopaminergic neurons from dopamine toxicity and also enhances the activities of catalase and glutathione peroxidase (36), which helps the brain to overcome catecholamine-induced toxicity during aging.

In contrast to catecholamines, serotonin was found to be decreased during aging (Table 3). The decreased activity of tryptophan hydroxylase in some brain areas may be responsible for this. The concentration of 5-HIAA (hydroxyindoleacetic acid) was shown to be increased in aged rats, and this increase may be correlated with the increased monoamine oxidase (MAO) activity during aging (37). In the cortex and striatum, the activities of MAO and carboxy-o-methyl transferase (COMT) were shown to be increased with age. There is evidence that cholinergic and serotonergic transmission could interact in the CNS (38). Recently, Lohninger and colleagues reported that the learning ability of old rats is improved by carnitine (39).

Conclusion

The results of the present study confirm that carnitine acts as a neuromodulator during aging. The antioxidant-replenishing, NGF-enhancing, and ATP-promoting actions of carnitine could be the factors responsible for its beneficial role in neurotransmitter metabolism. Aging is also associ-
ated with an increase in occurrence of heart, kidney, and immunological disorders. The beneficial role of L-carnitine has already been confirmed in the above conditions. The present findings suggest that L-carnitine could be used for the treatment of neuromedulatory disorders in view of its beneficial neuromodulatory activity and may also serve as an antiaging medication.

ACKNOWLEDGMENT

This study was supported by the University Grant Commission, New Delhi, India.

Address correspondence to Chinnakannu Panneerselvam, Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 113, Tamil Nadu, India. E-mail: panneerselvam@eth.net

REFERENCES

Received May 9, 2003
Accepted July 3, 2003
Decision Editor: James R. Smith, PhD